
Communication Avoiding Power Scaling
Power Scaling Derivatives of Algorithmic Communication Complexity

John D. Leidel, Yong Chen

Parallel Programming Models & Systems for High End Computing

(P2S2 2015)

Sept 1, 2015

1

Overview

•  Intro: Power limitations of scalable systems

•  Energy Performance Scaling

•  Algorithmic Techniques

•  Algorithmic Experiments

•  Energy Performance Scaling

2

INTRO
Power limitations of scalable systems

3 / 22

Power Limitations of
Scalable Systems
•  Current HPC systems are limited in scale due to hardware,

software and power [facilities]
•  Power has become a first order driver to scaling HPC

platforms to the next major milestone
•  P. Kogge (editor). “Exascale Computing Study: Technology Challenges in

Achieving Exascale,” Univ. of Notre Dame, CSE Dept. Tech Report TR-2008-13,
Sept. 28, 2008.

•  Classic research on power has focused on:
•  Power monitoring: hardware and software techniques
•  Power scaling: largely reactive hardware and software techniques to meter

power usage

•  We present a tertiary area of research associated with
classifying the power performance of scalable parallel
algorithms

4
How scalable can my algorithm execute in terms of

my facilities?

ENERGY PERFORMANCE
SCALING

Governing equations behind determining energy performance efficiency

5 / 22

Energy Performance
Equations

6

(1) EPp = EAvgp / Tp ; where EAvg = average peak power and T = runtime

(2) EPP = (EAvgs + max(EAvgp)) / (Ts + max(Tp))

 where {Ts, EAvgs} = Sequentual code; {Tp,EAvgp} = Parallel code

(3) EAvgp = p

 where PPL’n is the Peak Power from one component power plane

(3) EPP = (s + max(p)) / (Ts + max(Tp))

(4) Scaling; S(EPP) = EPP / EP1

 where EPP = energy performance quantity for a given problem size
 using P parallel units
 EP1 = energy performance quantity for a given problem size
 using 1 parallel unit

The governing equations for quantifying Energy Performance [EP] can
be described as follows:

Energy Performance Scaling

7

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 3 4

Sc
al

in
g

Threads

Energy Performance
Scaling

linear

Ideal EPP Scaling

Superlinear EPP
Scaling

•  Linear Scaling
•  Best possible scenario

where power and
performance scaling are
identical

•  Ideal Scaling
•  Power scales at a rate

less than performance
scaling, or

•  Performance is
significantly sub-linear

•  Superlinear Scaling
•  Power scales at a rate

greater than
performance scaling

ALGORITHMIC TECHNIQUES
Matrix multiplication methodologies

8 / 22

Algorithmic Techniques

•  We utilize classic double precision,
square matrix multiplication as the
basis for our research
•  BLAS: DGEMM

•  We choose three algorithmic
techniques:
•  OpenBLAS [CBLAS]: Parallel Blocked (Tiled)
•  Classic Strassen-Winograd: Recursive operation

reduction
•  Communication Avoiding Parallel Strassen

[CAPS]: Two-stage recursive operation and
communication reduction

•  Known Issues?
•  Parallel Strassen techniques require sufficiently

large problems in order to meet or exceed the
performance of blocked techniques

•  Strassen has different numerical stability than
blocked techniques

9

!

OpenBLAS: Blocked Matmul

•  Classic method to partition
matrices into bxb sub-blocks
•  Optimize the locality of the respective

sub-blocks by prefetching into “fast”
memory

•  Excellent scaling on
architectures with multi-level
caches
•  Excellent performance characteristics

even with large systems
•  Limited in performance to the theoretical

peak of the system
•  Still an N3 algorithm

•  Very power hungry
•  Largest portions of the processor are

frequently utilized: cache

•  OpenBLAS Implementation
•  Solver written in assembly
•  Utilizes SIMD units [AVX2]
•  Utilizes OpenMP worksharing

10

Strassen-Winograd

•  Recursive method to multiply
square matrices

•  Method:
•  Recursively partitions matrix and

performs a series of 7 sub-matrix
computations

•  Cutoff threshold triggers a switch to a
dense solver [traditional n3]

•  Possible to exceed theoretical peak
performance

•  Requires sufficiently large problems

•  Implementation based upon
Barcelona OpenMP Task Suite
Strassen
•  Utilizes OpenMP Tasks for parallelism

across threads
•  Manually unrolls dense loops for good

SIMD utilization
•  Cutoff threshold of N’=64

11

Q1 = (A11 + A22) * (B11 +B22)
Q2 = (A21 + A22) B11
Q3 = A11 * (B12 – B22)
Q4 = A22 * (B21 – B11)
Q5 = (A11 + A12) * B22
Q6 = (A21 – A11) * (B11 + B12)
Q7 = (A12 – A22) * (B21 + B22)

C11 = Q1 + Q4 – Q5 + Q7
C12 = Q3 + Q5
C21 = Q2 + Q4
C22 = Q1 – Q2 + Q3 + Q6

Reducing operation count by trading
multiplication for recursive addition

Communication Avoiding
Parallel Strassen [CAPS]
•  Derived from Strassen-

Winograd and 2.5D
techniques
•  Recursive implementation of

Strassen
•  Represents matrix partitioning as

a tree rather than tiles

•  At each recursive depth,
decide whether to use
breadth-first or depth-first
parallelism
•  BFS: All 7 sub-problems executed

in parallel [OpenMP Task]
•  DFS: Each sub-problems executed

sequentially, with parallelism
[OpenMP Worksharing]

12
We modify our Strassen implementation from

BOTS and utilize a cutoff depth of 4

ALGORITHMIC
EXPERIMENTS

Test infrastructure, performance data and power data

13 / 22

Test Platform

•  Hardware
•  Lenovo TS140 server
•  Intel Xeon E3-1225 [Haswell]; Quad core

 3.2Ghz; 8MB cache
•  DDR3-PC3-12800 DIMM w/ 4GB capacity
•  Power saving features disabled in BIOS

•  Disables frequency scaling

•  Software
•  OpenSUSE 13.1; kernel: 3.11.10-7 x86_64
•  GNU GCC 4.8.1 20130909

•  Use –march=avx2 where possible

•  Barcelona OpenMP Task Suite 1.1.2 [modified]
•  OpenBLAS 0.2.8.0
•  PAPI 5.3.0

•  Built with support for Intel RAPL:

•  http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:RAPL_Access 14

Algorithmic Experiments

•  Strassen_P Driver
•  Drives all tests using identical memory allocation
•  Initializes PAPI performance and power monitoring
•  Forces 60sec sleep period between tests

•  Matrix Problem Sizes [NxN]
•  N = {512, 1024, 2048, 4096}
•  Larger problems are possible with OpenBLAS
•  Strassen requires additional buffer space

•  Parallelism
•  Utilizes OpenMP thread counts = {1, 2, 3, 4}
•  OpenMP configured using OMP_NUM_THREADS environment variable

•  Power Measurement
•  Power measured from within the driver using the PAPI RAPL component
•  Requires special permission to access system registers

15

Performance

16

Performance
differential between

OpenBLAS and
Strassen is expected

Power

17

Significant power
differential between

OpenBLAS and
Strasssen

ENERGY PERFORMANCE
SCALING

Utilizing our governing equations, examine our algorithmic efficiency

18 / 22

Energy Performance
Scaling: S(EPP)

19

OpenBLAS is
superlinear

Strassen is ideal

Conclusions
•  Governing equations to classify algorithmic

complexity in terms of its energy performance
efficiency: EPP

•  Performance
•  OpenBLAS achieves highest performance on our SMP platform
•  CAPS is on average 5.97% faster than Strassen on our platform

•  Power
•  OpenBLAS has the highest overall power
•  CAPS has an average power improvement of 2.59% over Strassen

•  Energy Performance Scaling
•  OpenBLAS implementation is superlinear: power scales at a faster rate

than performance
•  Strassen and CAPS fall within the ideal range
•  CAPS is slightly closer to the linear scale

20

Conclusion: CAPS provides the best EPP scaling
of all three approaches.

Future Work

•  Additional Platform Measurement
•  Additional testing on more scalable Haswell systems
•  Measurement on forthcoming Skylake systems
•  How do these results vary on Xeon Phi or AMD APU systems?

•  Additional Algorithm Measurement
•  Our aforementioned measurements were dense algorithms, what about

sparse?
•  SPMV measurements using different storage techniques: CSR, CSC, raw,

etc

•  Power measurement Techniques

•  The component power measurement capabilities are still relatively limited
•  This is especially true on current/forthcoming memory devices (HBM, HMC)

21

References

G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. “Communications-optimal parallel algorithm for
strassen’s matrix multiplication,” CoRR, abs/1202.3173, 2012.
G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. “Graph expansion and communication costs of fast matrix
multiplication,” J. ACM, 59(6):32:1-32:23, Jan. 2013.
B. Lipshitz, G. Ballard, J. Demmel and O. Schwartz. “Communication-avoiding Parallel Strassen: Implementation and
Performance,” Proceedings of the International Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’12, pp. 101:1-101:11, 2012.
K. Goto and R. Van De Geijn. “High-performance implementation of the level-3 blas”, ACM Trans. Math. Softw., 35(1)
July 2008.
V. Weaver, M. Johnson, M. Kasichayanula, J. Ralph, P. Luszczek, D. Terpstra, and S. Moore. “Measure Energy and
Power with PAPI,” International Workshop on Power-Aware Systems and Architectures, Pittsburgh, PA, September 10,
2012.
Z. Xianyi, W Qian, Z, Yunquan, “Model-driven Level 3 BLAS Performance Optimization on Longsoon 3A Processor,”
2012 IEEE 18th International Conference on Parallel and Distributed Systems, 17-19 Dec.2012.
A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade, “Barcelona OpenMP Tasks Suite: A Set of Benchmarks
Targeting the Exploitation of Task Parallelism in OpenMP,” Proceedings of the 2009 International Conference on
Parallel Processing (ICPP ’09). IEEE Computer Society, Washington, DC, USA, 124-131.
N.J. Higham, “Accuracy and Stability of Numerical Algorithms,” SIAM, Philadelphia, PA, 2nd edition, 2002.

24

References

OpenMP Architecture Review Board, “OpenMP Application Programming Interface Version 4.0.0,” July 2013.
P. Mucci, J. Dongarra, R. Kufrin, S. Moore, F. Song, and F. Wolf, “Automating the Large-Scale Collection and Analysis
of Performance,” Proceedings of the 5th LCI International Conference on Linux Clusters: The HPC Revolution, Austin,
Texas, May 18-20, 2004.
K.R. Wadleigh, I.L. Crawford, “Mathematical Kernels: The Building Blocks of High Performance,” in Software
Optimization for High Performance Computing, 1st ed. Upper Saddle River, New Jersey: Prentice Hall PTR, 2000, ch.
10, sec. 10.9.1, pp 299-300.
V.V. Williams, “An Overview of the Recent Progress on Matrix Multiplication,” SIGAct News 43, 4, December 2012,
57-59.
IBM Systems, IBM PowerExecutive 1.10 Installation and User’s Guide, June 2006.
C. Lefurgy, X. Wang, and M. Ware. Power Capping: A Prelude to Power Shifting. Cluster Computing, 11, 2. June 2008,
183-195.
P. Bohrer et.al., The Case for Power Management in Web Servers. In R. Graybill and R. Melhem, editors, Power Aware
Computing. Kluwer Academic Publishers, 2002.
H. Hoffman, S. Sidiroglou, M. Carbin, S. Misailovic, A. Argawal, and M. Rinard. Power-Aware Computing with
Dynamic Knobs. Technical Report TR-2010-027, CSAIL, MIT, May 2010.
H. Hoffman, S. Sidiroglou, M. Carbin, A. Argawal, and M. Rinard. Dynamic Knobs for Response Power-Aware
Computing. Proceedings of the 16th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS XVI). ACM, New York, NY. 199-212.

25

References

Y.H. Lu et.al, “Operating-system Directed Power Reduction,” Int. Symp. on Low Power
Electronics and Design, 2000.
Q.Wu, et.al. “Fomral Control Techniques for Power-Performance management.” IEEE
Micro, 25(5), 52-62, 2005.
P. Kogge (editor). “Exascale Computing Study: Technology Challenges in Achieving
Exascale,” Univ. of Notre Dame, CSE Dept. Tech Report TR-2008-13, Sept. 28, 2008.
B.Grayson, A.Shah, R. van de Geijn. “A High Performance Strassen Implementation,”
Department of Computer Science, The University of Texas, TR-95-24, June 1995.
Q. Luo, J.B. Drake, “A Scalable Parallel Strassen’s Matrix Multiplication Algorithm
for Distributed Memory Computers,” Proceedings of the 1995 ACM Symposium on
Applied Computing. ACM, New York, NY. 221-226.
E. Solomonik and J. Demmel. “Communication-optimal parallel 2.5D matrix
multiplication and LU factorization algorithms”. In Euro-Par’11:
Proceedings of the 17th International European Conference on Parallel and
Distributed Computing. Springer, 2011.

26

